Demarcation of Prime Farmland Protection Areas around a Metropolis Based on High-Resolution Satellite Imagery
نویسندگان
چکیده
Prime farmland (PF) is defined as high-quality farmland and a prime farmland protection area (PFPA, including related roads, waters and facilities) is a region designated for the special protection of PF. However, rapid urbanization in China has led to a tremendous farmland loss and to the degradation of farmland quality. Based on remote sensing and geographic information system technology, this study developed a semiautomatic procedure for designating PFPAs using high-resolution satellite imagery (HRSI), which involved object-based image analysis, farmland composite evaluation, and spatial analysis. It was found that the HRSIs can provide elaborate land-use information, and the PFPA demarcation showed strong correlation with the farmland area and patch distance. For the benefit of spatial planning and management, different demarcation rules should be applied for suburban and exurban areas around a metropolis. Finally, the overall accuracy of HRSI classification was about 80% for the study area, and high-quality farmlands from evaluation results were selected as PFs. About 95% of the PFs were demarcated within the PFPAs. The results of this study will be useful for PFPA planning and the methods outlined could help in the automatic designation of PFPAs from the perspective of the spatial science.
منابع مشابه
روشی جدید در قطعه بندی خودکار تصاویر ماهواره ای با دقت بالا برای استخراج خطوط ساحلی
The objective of this paper is to introduce a new method for coastlines delineation from high-resolution satellite images automatically. The proposed approach integrates the color histogram analysis for estimating the number of clusters, fuzzy c-partition, and genetic algorithms for optimizing fuzzy c-partition matrix. The imagery is classified into homogenous areas using the proposed fuzzy log...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملInvestigation on the Amount of Mortality of Iranian Oak Trees (Quercus brantii Lindi) using Satellite Imagery (Case study: Dashtebarm forests of Fars Province)
In recent years, oak trees in the Zagros forests have suffered a lot of fatalities for unclear reasons. Determining the rate and severity of forest crown density changes is important for the investigation and management of these forests. This research was carried out with the aim of determining the amount of crown cover changes in the forest area of Dashtebarm in Fars province under the influen...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملRecognizing the eroded areas using the surface albedo algorithm of Landsat 8 satellite imagery (case study of basin Jajrood)
Soil is one of the most important natural resources of any country. the erosion causes not only the depletion of the soil and the loss of the land, causing great and irreparable damages, but also with the deposition of materials in streams, reservoirs, ports, and reduced pool capacity. Therefore, it should not be underestimated. In this study, we identify and zoning of the erosion areas in the ...
متن کامل